

onference on Windpower and Environmental Impacts

Nocturnal migration during construction of an offshore windfarm: comparison of stationary and mobile radar detection

Helmut Wendeln*, Brigitte Hielen, Dieter Todeskino

Background

In the German EEZ 7 offshore windfarms are under construction and further 21 approved, erection starting next years. Whereas during pre-construction ship based investigations have to be performed according to fixed methodological standards, using platforms is recommended during construction and operation. During the monitoring of bird migration in the construction stage of the first commercial German offshore wind farm "BARD Offshore 1" we used vertically rotating ship radars from a platform within the park and simultaneously from a vessels close to the construction site and compared nocturnal migration rates at the two close by sites. The intention of this poster is to highlight advantages and disadvantages of stationary (platform) and mobile detection (from vessels) for construction and operational monitoring.

Study site and radar device

On the platform inside of the windfarm a vertically rotating radar works permanently. Simultaneously, trips with vessels are performed equipped with a radar (also vertically operating). The anchoring site ideally was 0,5 to 1km from the currently active construction site (see Fig. Above for site S4-4). Both radars (Bridgemaster) had 25 kW power output and worked with same settings (e.g. 1,5 km range, medium pulse...). The radar images were stored and bird echoes detected on the (e.g. J.) Min large, incluint puse...). The road images were scored and the endes detectability (programm screen. Before analyses, the data were corrected for distance dependent detectability (programm DISTANCE, buckland et al. 2004: Advanced Distance Sampling: estimating abundance of biological populations, Oxford University Press) and the orientation of the radar beam relative to the calculated.

Advantages/disadvantages

	advantage		disadvantage		
	mobile	stationary	mobile	stationary	
mobility	measuring at the site of			measurements are	
	interest; important during			restricted to one site. In	
	construction (being where			not every wind park	
	effects may occur), but also			project platforms have	
	during monitoring (different			suitable locations (e.g.	
	investigation sites according			within wind farm) for	
	to season)			measuring bird migration.	
				Seasonal variation in	
				migration patterns can not	
				be adressed	
data quality		a fixed position	due to movements of		
		improves data	vessels, data quality is		
		quality. Also	restriced (changing		
		advanced radar	detection area, high		
		technique can be	reflection from water		
		applied	surface); currently, no		
			advanced radar		
			technique works on		
			vessels		
	on vessels, ornithologists are			on platforms, device is	
	at place. Behaviours like			usually remotely	
	attraction/avoidance			operated. Even with	
	influencing local migration			automatic visual devices	
	can be seen; interpretation			the interpretation of local	
	of data is much better			situation is limited. This	
				may cause artefacts like	
				shown here	
		on platforms	with vessels only a		
		radars can work	sample of migration		
		permanently	activity can be		
		covering the	monitored on research		
		whole season	trips		

The

Fig. 2. Correlation of MTR on platform and on vessel (close to construction site)

On 25 nights during autumn 2011 and spring 2012 migration traffic rates of nocturnal migration from both radar systems are compared. Fig. 1 demonstrates an expressed variation of migration intensity in the course of the 25 days. The median of the platform data did not differ signifcantly from median data on vessel (platform: 85, vessel: 116: Wilcoxon-Test for related samples: ns). Within single nights MTRs at the close by sites can differ, however the overall correlation of MTRs is significant (Spearman-Correlation: r=0.512. p=0.009, Fig.2). The causes of the differences is adressed below with the example night from 8 to 9th November 2011 with MTRs of >1,000 close to the construction site and 100-200 near the platform.

The overall data from 25 nights showed a very similar altitudinal distribution comparing the situation on the platform and near the vessel (Fig. 3). On a monthly basis, characteristics of migration get clear from both data sets (e.g. expressed migration at altitudes from 800 to 1,000 m in March 2012 or very low migration in November 2011).

Tab. 1. Characteristics of five nights with the highest MTR in autumn 2011 and spring 2012 (measured on vessel, sorted by decreasing MTR; species: songbirds liste further species comprise gulls/wader)

night	8./9.112011	9./10.11.2011	13./14.03.2012	15./16.03.2012	1./2.11.2011
MTR	1,438	1,220	857	611	596
% < 200 m	91	77	24	40	79
visibility (km)	5	2	10	6	7
wind speed (bft)	4	3	3	4	3
ind direction (*)	132	147	278	167	180
clouds(1/8)	8	8	8	3	8
Precepitation	no	no	1 h	no	2 h
remarks protocol (observer on vessel) ¹	many bird echoes around the construction site (obviously attraction)	again many birds around the construction site (again attraction)	no comment	no comment	no comment
	due to the fog construction site made the impression of a lighted canvas; many birds seen there by binoculars (thrushes, small songbirds, waders)	same situation like the night before			
bird calls (birds/h/night)	22.9	39.7	1.0	6.3	261.7
species/number during night according to bird calls	robin: 12 redwing: 5 blackbird: 6 song thrush: 4	robin: 10 redwing: 24 blackbird: 17 song thrush: 10	no birds	robin: 4 redwing: 1 blackbird: 11	robin: 104 redwing: 411 blackbird: 278 song thrush: 88

Conclusions

The results show that from vessels reliable data on bird migration can be measured with respect to intensities and altitudinal distribution. Local effects like attraction by light can cause artificial data that can only be discovered by visual observation. Placed at an appropriate site (in relation to wind farm), platforms give the opportunities to apply radar techniques (also advanced techniques) for continuous measurements with high quality. Due to the mobility of vessels the location of measurements can be optimized. Both systems (mobile and platform based) have their egilibility and should ideally be used in combination. Platform data enable the identification of nights with mass migration, whereas with measurements from vessels behavioural aspects should be in focus. Further, efforts should be made to improve data quality from vessels (currently used vertically rotating ship radars or other radar techniques).

1 shows characteristics nocturnal migration during five nights of highest migration intensities.

two nights in November 2011 with MTRs > 1,000 were characterized by low visibility and fog. The observers on the vessel noted an attraction of birds to the construction site and many birds close to the strongly lighted jack-up barge. Bird call activity at the vessel was even low. Accordingly, the very high migration rates were artefacts caused by attraction. Even at very small scale (distance between vessel and platform about 3 km) differences in MTRs can be measured. A validation of the situation is only possible by visually monitoring the sites. In other nights with strong migration situation can differ between no bird calls heard (migration at high altitude in March 2012, see also Fig. 3) and very high number of calls in nights with migration at low altitudes (e.g. 1./2.11.2011).

IBL Umweltplanung GmbH Bahnhofstraße 14a D-26122 Oldenburg wendeln@ibl-umweltplanung.de

Acknowledgements:

This study was conducted in the framework of ecological monitoring in OWF "BARD Offshore I". We thank BARD for cooperation and especially the platform crew for handling and transfer of radar data

